Feedbacks between riparian vegetation and fluvial processes at multiple scales in natural and managed rivers

John C. Stella¹, Li Kui¹,², Patrick B. Shafroth³, Andrew C. Wilcox⁴, Anne Lightbody⁵, P. Kyle House³, Rebecca Diehl⁴, and Sharon Bywater-Reyes⁴

¹ State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
² Marine Science Institute, University of California, Santa Barbara, CA, USA
³ Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
⁴ University of Montana, Missoula, MT, USA
⁵ University of New Hampshire, Durham, NH, USA
Fluvial – Vegetation Interactions

- Fluvial forces interact with woody riparian plants in complex ways to influence the coevolution of river morphology and floodplain plant communities.

- How do feedbacks occur between local-scale vegetation change (composition and density) and corridor-wide evolution of river morphology?

Introduction
Small scale experiments
Large scale study
Conclusion
A need to bridge scales of inquiry

- Small vs. large scales
- Mechanistic vs. observational
- Simplicity vs. realism
- Physical vs. ecological approaches

Schoneboom et al., 2011. 10.1007/978-3-642-17475-9_18

Corenblit et al., 2007. ESPL 10.1016/j.earscirev.2007.05.004

Montgomery & Buffington 1998
Ecosystem changes can happen quickly

Virgin River, 2010 (a 10-20 year flood)
But how do we get from single flood events ...

... to long-term patterns of floodplain/vegetation coevolution?

Stella et al., 2011. Ecosystems 10.1007/s10021-011-9446-6
Management context #1

- How does vegetation size, density, and composition influence flow hydraulics and channel morphodynamics?
- Sediment equilibrium vs. deficit conditions
- Controls on plant uprooting force
- Implications for floodway mgt.

Management context #2

• Tamarisk in the U.S. Southwest influences both riverine plant communities and geomorphic processes.
• Can we use environmental flows to help control tamarisk’s spread?
Kui et al. -- an integrated suite of multi-disciplinary studies that contrasted the responses of tamarisk (*Tamarix* spp.) and cottonwood (*Populus fremontii*) in terms of

1. differences in vulnerability to scour and burial during floods;
2. interactions and feedbacks between plants and river morphodynamics; and
3. long-term coevolution of river floodplains and riparian communities following flow regulation from dams.

Li Kui
Monospecific trials; straight flume (manuscript in prep)

Mixed species; large outdoor meandering channel (Kui et al., 2014, *WRR*)

Multiple species mortality in burial (Kui & Stella, 2016, *Forest Ecol. & Mgt.*)

>50 years; river corridor evolution (Kui et al., 2017, *Ecohydrology*)

Temporal scales

- Seconds
- Hours
- Years
- Decades

Spatial scales (m²)

- Individuals: 10^{-1}
- Patches: 10^0
- Stands: 10^1
- Reaches: 10^2
- River corridors: 10^3
- Vegetation communities: 10^4
- >50 years: 10^5
- >10 years: 10^6
- >100 years: 10^7

Introduction

Small scale experiments

Large scale study

Conclusion
Small scale: plants in a patch

- Understand differences in plant morphological traits between cottonwood and tamarisk.
- Quantify plant burial and dislodgement during floods
- Quantify sediment deposition patterns

Pre-flood

Post-flood

Buried plants

Dislodged plants
Results:

Plant structure

- **Tamarisk:** Shrubby plant with lower crown and higher root biomass.
- **Cottonwood:** Single-stem plant with higher crown and lower root mass.
Two flume systems controlled discharge and sediment inputs.

Straight channel \rightarrow sediment deficit conditions \rightarrow plant dislodgement

Meandering channel \rightarrow sediment equilibrium \rightarrow plant burial
Plant mortality

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>Plant size</th>
<th>Density</th>
<th>Lost by</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight channel</td>
<td>cottonwood</td>
<td>short</td>
<td>sparse</td>
<td>Dislodgement</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>cottonwood</td>
<td>tall</td>
<td>sparse</td>
<td>Dislodgement</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>tamarisk</td>
<td>short</td>
<td>sparse</td>
<td>Dislodgement</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>tamarisk</td>
<td>tall</td>
<td>sparse</td>
<td>Dislodgement</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>cottonwood</td>
<td>short</td>
<td>dense</td>
<td>Dislodgement</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>cottonwood</td>
<td>mixed size</td>
<td>dense</td>
<td>Burial</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>tamarisk</td>
<td>mixed size</td>
<td>dense</td>
<td>Burial</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>mixed</td>
<td>mixed size</td>
<td>sparse</td>
<td>Burial</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>mixed</td>
<td>mixed size</td>
<td>dense</td>
<td>Burial</td>
<td>19%</td>
</tr>
</tbody>
</table>

- **Plant size**: shorter plants were more vulnerable
- **Different species** responses to mortality mechanisms:
 - Dislodgement: cottonwood loss > tamarisk loss
 - Burial: tamarisk loss > cottonwood loss
- **Density** effects: plants in sparse patches were more vulnerable

Introduction

Small scale experiments

Large scale study

Conclusion
Summary – small scale experiments

- Larger plants had decreased vulnerability to floods
- Tamarisk had
 - greater frontal area \rightarrow sediment deposition \rightarrow increased plant burial
 - greater root mass \rightarrow stabilized soils \rightarrow reduced plant loss to scour.
- Both species and density influenced sediment deposition patterns.
Monospecific trials; straight flume (manuscript in prep)

Mixed species; large outdoor meandering channel (Kui et al., 2014, *WRR*)

Multiple species mortality in burial (Kui & Stella, 2016, *Forest Ecol. & Mgt.*)

>50 years; river corridor evolution (Kui et al., 2017, *Ecohydrology*)

Introduction

Small scale experiments

Large scale study

Conclusion
Large scale: long-term river and vegetation evolution

- How does vegetation develop on high vs. low floodplains?
- How do channel width, braiding, and sinuosity respond in tamarisk vs. cottonwood dominated reaches?

Introduction
Small scale experiments
Large scale study
Conclusion
Methods – aerial photo interpretation

- Seven aerial photo series from 1953 to 2009 were analyzed in GIS.
- **Vegetation**: 3 cover types (cottonwood/willow, tamarisk, other vegetation) 2 densities (dense >50%, sparse <50%)
- **Geomorphology**: low vs high floodplains

Introduction

Small scale experiments

Large scale study

Conclusion
Analysis – two scales, two directions

- **Reach scale:**
 - species (tamarisk vs. cottonwood-willow),
 - geomorphic change (width, braiding, sinuosity)

- **River scale:**
 - vegetation area change × time × geomorphic surface × species

Introduction
Small scale experiments
Large scale study
Conclusion
Results – river scale veg area

- Flood magnitude and frequency decreased since dam construction (1968)
- Vegetation cover quadrupled since dam completion.

Chart:
- Pre-dam and Post-dam periods.
- Peaks of flood magnitude depicted.
- Total vegetation area plotted.

Sections:
- Introduction
- Small scale experiments
- Large scale study
- Conclusion
Geomorphologic changes

- Channel narrowed by 70%.
- Sinuosity increased slightly.
- Channel braiding decreased by 33%.
- Tamarisk had stronger effects on river morphology than cottonwood.
Effects of vegetation type on reach-scale geomorphologic changes

Linear mixed model results quantifying the influence of local vegetation cover on adjacent channel morphological changes (width, sinuosity, and braiding index).

<table>
<thead>
<tr>
<th>Response</th>
<th>Vegetation Type</th>
<th>Coefficient Estimate</th>
<th>Standard Error</th>
<th>F value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel width (m)</td>
<td>Cottonwood/willow</td>
<td>-0.627</td>
<td>0.161</td>
<td>15.18</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Tamarisk</td>
<td>-0.501</td>
<td>0.137</td>
<td>13.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Sinuosity (m m(^{-1}))</td>
<td>Cottonwood/willow</td>
<td>0.021</td>
<td>0.022</td>
<td>0.89</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Tamarisk</td>
<td>0.036</td>
<td>0.018</td>
<td>3.92</td>
<td>0.05</td>
</tr>
<tr>
<td>Braiding index</td>
<td>Cottonwood/willow</td>
<td>-0.441</td>
<td>0.328</td>
<td>1.8</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Tamarisk</td>
<td>-0.632</td>
<td>0.276</td>
<td>5.25</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Plant/geomorphic feedbacks in the river environment

- Interactions vary depending on species, plant size, and density
Conceptual model of river change

A Undammed channel

B Post-dam short term (1-5 year)

C Post-dam long term (>10 years)

Abiotic driver:
Modified hydrology

Biotic driver:
Vegetation expansion

Introduction
Small scale experiments
Large scale study
Conclusions
Management implications

Are environmental flow releases effective for tamarisk control?

- Small tamarisk suffer greater burial mortality → brief window of opportunity
- Very high uncertainty in system-wide response to flow releases, depending greatly on flood hydraulics and sediment supply
Acknowledgements

Funding: National Science Foundation

Facilities and Collaborators:

Leonard Sklar, CSU-SF

Saint Anthony Falls Lab (Minneapolis, MN)

Richmond Field Station (Berkeley, CA)
Team Vegemorf: Interdisciplinary Vegetation – Geomorph Studies

* indicates student authors

